Acceptor RNA cleavage profile supports an invasion mechanism for HIV-1 minus strand transfer.
نویسندگان
چکیده
We previously proposed that HIV-1 minus strand transfer occurs by an acceptor invasion-initiated multi-step mechanism. During synthesis of minus strong stop DNA, reverse transcriptase (RT) transiently pauses at the base of TAR before continuing synthesis. Pausing promotes RT-RNase H cleavage of the donor RNA, exposing regions of the cDNA. The acceptor RNA then invades at these locations to interact with the minus strong stop DNA. Whereas primer extension continues on the donor RNA, the cDNA-acceptor hybrid expands by branch migration until transfer of the primer terminus is completed. We present results here showing that the interaction of the acceptor RNA and the cDNA can be determined by examining the time-dependent cleavage of the acceptor RNA by RNase H. Our approach utilizes a combination of RT-RNase H and Escherichia coli RNase H to allow assessment of acceptor-cDNA interactions at high sensitivity. Results show an initial interaction of the acceptor RNA with cDNA at the base of TAR. We observe a time-dependent shift in RNase H susceptibility along the length of the acceptor toward the 5' end, suggesting hybrid propagation from the initial invasion point. Control experiments validate that the RNase H cleavage profile represents the formation and expansion of the acceptor-DNA interaction and that the process is promoted by the nucleocapsid. Observations with this new approach lend additional support to the proposed multistep transfer mechanism.
منابع مشابه
Insights into the multiple roles of pausing in HIV-1 reverse transcriptase-promoted strand transfers.
We previously analyzed the role of pausing induced by hairpin structures within RNA templates in facilitating strand transfer by HIV-1 RT (reverse transcriptase). We proposed a multistep transfer mechanism in which pause-induced RNase H cuts within the initial RNA template (donor) expose regions of cDNA. A second homologous RNA template (acceptor) can interact with the cDNA at such sites, initi...
متن کاملMechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase.
Two DNA strand transfer reactions occur during retroviral reverse transcription. The mechanism of the first, minus strand strong-stop DNA, transfer has been studied in vitro with human immunodeficiency virus 1 reverse transcriptase (HIV-1 RT) and a model template-primer system derived from the HIV-1 genome. The results reveal that HIV-1 RT alone can catalyze DNA strand transfer reactions. Two k...
متن کاملEffects of nucleic acid local structure and magnesium ions on minus-strand transfer mediated by the nucleic acid chaperone activity of HIV-1 nucleocapsid protein
HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which is required for highly specific and efficient reverse transcription. Here, we demonstrate that local structure of acceptor RNA at a potential nucleation site, rather than overall thermodynamic stability, is a critical determinant for the minus-strand transfer step (annealing of acceptor RNA to (-) strong-stop DNA followed by rev...
متن کاملEvidence for a Mechanism of Recombination during Reverse Transcription Dependent on the Structure of the Acceptor RNA*□S
Genetic recombination is a major force driving retroviral evolution. In retroviruses, recombination proceeds mostly through copy choice during reverse transcription. Using a reconstituted in vitro system, we have studied the mechanism of strand transfer on a major recombination hot spot we previously identified within the genome of HIV-1. We show that on this model sequence the frequency of cop...
متن کاملActinomycin D inhibits human immunodeficiency virus type 1 minus-strand transfer in in vitro and endogenous reverse transcriptase assays.
In this report we demonstrate that human immunodeficiency virus type 1 (HIV-1) minus-strand transfer, assayed in vitro and in endogenous reactions, is greatly inhibited by actinomycin D. Previously we showed that HIV-1 nucleocapsid (NC) protein (a nucleic acid chaperone catalyzing nucleic acid rearrangements which lead to more thermodynamically stable conformations) dramatically stimulates HIV-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 15 شماره
صفحات -
تاریخ انتشار 2005